AP Calculus BC Chapter 10 Part 1- AP Exam Problems

All problems are NO CALCULATOR unless otherwise indicated.

Parametric Curves and Derivatives

- 1. In the xy-plane, the graph of the parametric equations x = 5t + 2 and y = 3t for $-3 \le t \le 3$, is a line segment with slope.
 - A) $\frac{3}{5}$ B) $\frac{5}{3}$ C) 3 D) 5 E) 13

- 2. If $x = t^3 t$ and $y = \sqrt{3t+1}$, then $\frac{dy}{dx}$ at t = 1 is
- A) $\frac{1}{8}$ B) $\frac{3}{8}$ C) $\frac{3}{4}$ D) $\frac{8}{3}$ E) 13

- 3. A curve in the plane is defined parametrically by the equations $x = t^3 + t$ and $y = t^4 + 2t^2$. An equation of the line tangent to the curve at t = 1 is:
 - A) y = 2x

- C) y = 2x 1 E) y = 8x + 13

B) v = 8x

- D) v = 4x 5
- 4. Consider the curve in the *xy*-plane represented by $x = e^t$ and $y = te^{-t}$ for $t \ge 0$. The slope of the line tangent to the curve at the point where x = 3 is (Calculator)
 - A) 20.086
- B) 0.342

- C) -0.005 D) -0.011 E) -0.033
- 5. If $x = t^2 + 1$ and $y = t^3$, then $\frac{d^2y}{dy^2} = \frac{d^2y}{dy^2} = \frac{d^2y}{dy} = \frac{d^2y}{dy}$
 - A) $\frac{3}{4t}$ B) $\frac{3}{2t}$ C) 3t D) 6t E) $\frac{3}{2}$

- 6. A particle moves along the curve xy = 10. If x = 2 and $\frac{dy}{dt} = 3$, what is the value of $\frac{dx}{dt}$?

 - A) $-\frac{5}{2}$ B) $-\frac{6}{5}$ C) 0 D) $\frac{4}{5}$ E) $\frac{6}{5}$

- 7. If $x = e^{2t}$ and $y = \sin(2t)$, then $\frac{dy}{dx} = \frac{dy}{dx}$
 - A) $4e^{2t}\cos(2t)$ B) $\frac{e^{2t}}{\cos(2t)}$ C) $\frac{\sin(2t)}{2e^{2t}}$ D) $\frac{\cos(2t)}{2e^{2t}}$ E) $\frac{\cos(2t)}{e^{2t}}$

8. For what values of t does the curve given by the parametric equations $x = t^3 - t^2 - 1$ and $y = t^4 + 2t^2 - 8t$ have a vertical tangent?

A) 0

B) 1

C) 0, $\frac{2}{3}$ D) 0, $\frac{2}{3}$, and 1 E) No value

9. For $0 \le t \le 13$, an object travels along an elliptical path given by the parametric equations $x = 3\cos t$ and $y = 4\sin t$. At the point where t = 13, the object leaves the path and travels along the line tangent to the path at that point. What is the slope of the line on which the object travels?

A) $-\frac{4}{3}$ B) $-\frac{3}{4}$ C) $-\frac{4 \tan 13}{3}$ D) $-\frac{4}{3 \tan 13}$ E) $-\frac{3}{4 \tan 13}$

10. The position of a particle moving in the xy-plane is given by the parametric equations $x = t^3 - 3t^2$ and $y = 2t^3 - 3t^2 - 12t$. For what values of t is the particle at rest?

A) -1

B) 0

C) 2

D) -1, 2

E) -1, 0, 2

11. A curve C is defined by the parametric equations $x = t^2 - 4t + 1$ and $y = t^3$. Which of the following is an equation of the line tangent to the graph of C at the point (-3, 8)?

A) x = -3 B) x = 2 C) y = 8 D) $y = -\frac{27}{10}(x+3)+8$ E) y = 12(x+3)+8

- 12. (1973 BC4, p. 538 #33) A kite flies according to the parametric equations $x = \frac{t}{\Omega}$ and $y = -\frac{3}{64}t(t-128)$ where t is measured in seconds and $0 < t \le 90$.
 - How high is the kite above the ground at time t = 32 seconds? (a)
 - At what rate is the kite rising at t = 32 seconds? (b)
 - At what rate is the string being reeled out at t = 32 seconds? (c)
 - At what time does the kite start to lose altitude? (d)
- 13. (1974 BC5) Given the parametric equations $x = 2(t \sin t)$ and $y = 2(1 \cos t)$.
 - Find $\frac{dy}{dt}$ in terms of t. (a)
 - Find an equation of the line tangent to the graph at $t = \pi$. (b)
 - Find an equation of the line tangent to the graph at $t = 2\pi$. (c)

14. (1982 BC6, p. 536 #9) Point P(x, y) moves in the xy-plane in such a way that $\frac{dx}{dt} = \frac{1}{t+1}$ and $\frac{dy}{dt} = 2t$ for $t \ge 0$.

- Find the coordinates of *P* in terms of *t* if, when t = 1, $x = \ln 2$ and y = 0. (a)
- Write an equation expressing y in terms of x. (b)
- Find the average rate of change of *y* with respect to *x* as *t* varies from 0 to 4. (c)
- Find the instantaneous rate of change of y with respect to x when t = 1. (d)

15. (1984 BC2, p. 538 #32) The path of a particle is given for time t > 0 by the parametric equations $x = t + \frac{2}{t}$ and $y = 3t^2$.

- Find the coordinates of each point on the path where the velocity of the particle in the x (a) direction is zero.
- Find $\frac{dy}{dy}$ when t = 1. (b)
- Find $\frac{d^2y}{dx^2}$ when y = 12.

16. (1989 BC4, p. 538 #30) Consider the curve given by the parametric equations $x = 2t^3 - 3t^2$ and $y=t^3-12t.$

- In terms of t, find $\frac{dy}{dx}$.
- (b) Write an equation for the line tangent to the curve at the point where t = -1.
- Find the x and y coordinates for each critical point on the curve and identify each point (c) as having a vertical or horizontal tangent.
- 17. (1993 BC2) The position of a particle at any time $t \ge 0$ is given by $x(t) = t^2 3$ and $y(t) = \frac{2}{3}t^3$. Find $\frac{dy}{dx}$ as a function of x.

Length of Parametric Curves

18. The length of the curve determined by the equations $x = t^2$ and y = t from t = 0 to t = 4 is

A)
$$\int_{0}^{4} \sqrt{4t+1} \, dt$$

C)
$$\int_0^4 \sqrt{2t^2 + 1} \, dt$$

A)
$$\int_0^4 \sqrt{4t+1} \, dt$$
 C) $\int_0^4 \sqrt{2t^2+1} \, dt$ E) $2\pi \int_0^4 \sqrt{4t^2+1} \, dt$

B)
$$2\int_0^4 \sqrt{t^2 + 1} dt$$
 D) $\int_0^4 \sqrt{4t^2 + 1} dt$

D)
$$\int_{0}^{4} \sqrt{4t^2 + 1} \, dt$$

- 19. The length of the path described by the parametric equations $x = \cos^3 t$ and $y = \sin^3 t$, for $0 \le t \le \frac{\pi}{2}$, is given by

 - A) $\int_{0}^{\frac{\pi}{2}} \sqrt{3\cos^{2}t + 3\sin^{2}t} \, dt$ B) $\int_{0}^{\frac{\pi}{2}} \sqrt{-3\cos^{2}t \sin t + 3\sin^{2}t \cos t} \, dt$

 - C) $\int_0^{\frac{\pi}{2}} \sqrt{9\cos^4 t + 9\sin^4 t} \, dt$ D) $\int_0^{\frac{\pi}{2}} \sqrt{9\cos^4 t \sin^2 t + 9\sin^4 t \cos^2 t} \, dt$
 - E) $\int_{0}^{\frac{\pi}{2}} \sqrt{\cos^6 t + \sin^6 t} dt$
- 20. The length of the path described by the parametric equations $x = \frac{1}{3}t^3$ and $y = \frac{1}{2}t^2$, where $0 \le t \le 1$, is given by
 - A) $\int_{0}^{1} \sqrt{t^2 + 1} dt$
- C) $\int_0^1 \sqrt{t^4 + t^2} dt$ E) $\frac{1}{6} \int_0^1 t^2 \sqrt{4t^2 + 9} dt$
- B) $\int_0^1 \sqrt{t^2 + t} \, dt$
- D) $\frac{1}{2}\int_{0}^{1}\sqrt{4+t^{4}}\,dt$
- 21. (1972 BC7) Let C be the curve defined from t = 0 to t = 6 by the parametric equations $x = \frac{t+2}{2}$, y = t(6-t). Set up but do not evaluate an integral expression for the length of *C*.
- 22. (1974 BC5) Given the parametric equations $x = 2(t \sin t)$ and $y = 2(1 \cos t)$. Set up but do not evaluate an integral expression representing the length of the curve over the interval $0 \le t \le 2\pi$. Express the integrand as a function of *t*.

Vectors

- 23. If f is a vector-valued function defined by $f(t) = (e^{-t}, \cos t)$, then f''(t) =
 - A) $-e^{-t} + \sin t$
- C) $\left(-e^{-t}, -\sin t\right)$ E) $\left(e^{-t}, -\cos t\right)$

- B) $e^{-t} \cos t$
- D) $(e^{-t}, \cos t)$
- 24. A particle moves in the *xy*-plane so that at any time *t* its coordinates are $x = t^2 1$ and $y = t^4 - 2t^3$. At t = 1, its acceleration vector is
 - A) (0,-1) B) (0,12) C) (2,-2) D) (2,0) E) (2,8)

25. For any time $t \ge 0$, if the position of a particle in the *xy*-plane is given by $x = t^2 + 1$ and $y = \ln(2t + 3)$, then the acceleration vector is

A)
$$\left(2t, \frac{2}{2t+3}\right)$$

A)
$$\left(2t, \frac{2}{2t+3}\right)$$
 C) $\left(2, \frac{4}{\left(2t+3\right)^2}\right)$ E) $\left(2, \frac{-4}{\left(2t+3\right)^2}\right)$

E)
$$\left(2, \frac{-4}{(2t+3)^2}\right)$$

B)
$$\left(2t, \frac{-4}{\left(2t+3\right)^2}\right)$$
 D) $\left(2, \frac{2}{\left(2t+3\right)^2}\right)$

$$D) \left(2, \frac{2}{\left(2t+3\right)^2}\right)$$

26. If a particle moves in the *xy*-plane so that at time t > 0 its position vector is $(\ln(t^2 + 2t), 2t^2)$, then at time t = 2, its velocity vector is

A)
$$\left(\frac{3}{4}, 8\right)$$

B)
$$\left(\frac{3}{4}, 4\right)$$

C)
$$\left(\frac{1}{8}, 8\right)$$

D)
$$\left(\frac{1}{8}, 4\right)$$

A)
$$\left(\frac{3}{4}, 8\right)$$
 B) $\left(\frac{3}{4}, 4\right)$ C) $\left(\frac{1}{8}, 8\right)$ D) $\left(\frac{1}{8}, 4\right)$ E) $\left(-\frac{5}{16}, 4\right)$

27. A particle moves on a plane curve so that at any time t > 0 its x-coordinate is $t^3 - t$ and its ycoordinate is $(2t-1)^3$. The acceleration vector of the particle at t=1 is

- A) (0, 1)

- B) (2, 3) C) (2, 6) D) (6, 12) E) (6, 24)

28. A particle moves in the *xy*-plane so that its position at any time *t* is given by $x = t^2$ and $y = \sin(4t)$. What is the speed of the particle when t = 3?

- A) 2.909
- B) 3.062
- C) 6.884
- D) 9.016
- E) 47.393

29. (1975 BC3) A particle moves on the circle $x^2 + y^2 = 1$ so that at time $t \ge 0$ the position is given by the vector $\left(\frac{1-t^2}{1+t^2}, \frac{2t}{1+t^2}\right)$.

- Find the velocity vector. (a)
- Is the particle ever at rest? Justify your answer. (b)
- Give the coordinates of the point that the particle approaches as t increases without (c) bound.

30. (1987 BC5) The position of a particle moving in the xy-plane at any time t, $0 \le t \le 2\pi$, is given by the parametric equations $x = \sin t$ and $y = \cos(2t)$.

- Find the velocity vector for the particle at anytime t, $0 \le t \le 2\pi$. (a)
- For what values of *t* is the particle at rest? (b)
- Write an equation for the path of the particle in terms of x and y that does <u>not</u> involve (c) trigonometric functions.

- 31. (1992 BC3) At time t, $0 \le t \le 2\pi$, the position of a particle moving along a path in the xy-plane is given by the parametric equations $x = e^t \sin t$ and $y = e^t \cos t$.
 - (a) Find the slope of the path of the particle at time $t = \frac{\pi}{2}$.
 - (b) Find the speed of the particle when t = 1.
 - (c) Find the distance traveled by the particle along the path from t = 0 to t = 1.
- 32. (1993 BC2) The position of a particle at any time $t \ge 0$ is given by $x(t) = t^2 3$ and $y(t) = \frac{2}{3}t^3$.
 - (a) Find the magnitude of the velocity vector at t = 5.
 - (b) Find the total distance traveled by the particle from t = 0 to t = 5.
- 33. (1994 BC3) A particle moves along the graph of $y = \cos x$ so that x-component of acceleration is always 2. At time t = 0, the particle is at the point $(\pi, -1)$ and the velocity vector of the particle is (0, 0).
 - (a) Find the *x* and *y* coordinates of the position of the particle in terms of *t*.
 - (b) Find the speed of the particle when its position is $(4, \cos 4)$.
- 34. (1995 BC1) Two particles move in the xy plane. For time $t \ge 0$, the position of particle A is given by x = t 2 and $y = (t 2)^2$, and the position of particle B is given by $x = \frac{3t}{2} 4$ and $y = \frac{3t}{2} 2$.
 - (a) Find the velocity vector for each particle at time t = 3.
 - (b) Set up an integral expression that gives the distance traveled by particle A from t = 0 to t = 3. Do not evaluate.
 - (c) Determine the exact time at which the particles collide; that is, when the particles are at the same point at the same time. Justify your answer.
- 35. (1997 BC1) During the time period from t = 0 to t = 6 seconds, a particle moves along the path given by $x(t) = 3\cos(\pi t)$ and $y(t) = 5\sin(\pi t)$.
 - (a) Find the position of the particle when t = 2.5.
 - (b) On a set of x and y-axes, sketch the graph of the path of the particle from t = 0 to t = 6. Indicate the direction of the particle along this path.
 - (c) How many times does the particle pass through the point found in part (a)?
 - (d) Find the velocity vector for the particle at any time *t*.
 - (e) Write and evaluate an integral expression, in terms of sine and cosine, that gives the distance the particle travels from time t = 1.25 to t = 1.75.

- 36. (1999 BC1) A particle moves in the *xy*-plane so that its position at any time t, $0 \le t \le \pi$, is given by $x(t) = \frac{t^2}{2} \ln(1+t)$ and $y(t) = 3\sin t$.
 - (a) Sketch the path of the particle on a set of *x* and *y*-axes. Indicate the direction of motion along the path.
 - (b) At what time t, $0 \le t \le \pi$, does x(t) attain its minimum value? What is the position (x(t), y(t)) of the particle at this time?
 - (c) At what time t, $0 \le t \le \pi$, is the particle on the y-axis? Find the speed and the acceleration vector of the particle at this time.
- 37. (2000 BC4) A moving particle has position (x(t), y(t)) at time t. The position of the particle at time t = 1 is (2, 6), and the velocity vector at any time t > 0 is given by $\left(1 \frac{1}{t^2}, 2 + \frac{1}{t^2}\right)$.
 - (a) Find the acceleration vector at time t = 3.
 - (b) Find the position of the particle at time t = 3.
 - (c) For what time t > 0 does the line tangent to the path of the particle at (x(t), y(t)) have a slope of 8?
 - (d) The particle approaches a line as $t \to \infty$. Find the slope of this line. Show the work that leads to your conclusion.
- 38. (2001 BC1) An object moving along a curve in the *xy*-plane has position (x(t), y(t)) at time t with $\frac{dx}{dt} = \cos(t^3)$ and $\frac{dy}{dt} = 3\sin(t^2)$ for $0 \le t \le 3$. At time t = 2, the object is at position (4, 5).
 - (a) Write an equation for the line tangent to the curve at (4, 5).
 - (b) Find the speed of the object at time t = 2.
 - (c) Find the total distance traveled by the object over the time interval $0 \le t \le 1$.
 - (d) Find the position of the object at time t = 3.

- 39. (2002 BC3) The figure above shows the path traveled by a roller coaster car over the time interval $0 \le t \le 18$ seconds. The position of the car at time t seconds can be modeled parametrically by $x = 10t + 4\sin t$, $y = (20 t)(1 \cos t)$, where x and y are measured in meters. The derivatives of these functions are given by $x' = 10 + 4\cos t$, $y' = (20 t)\sin t + \cos t 1$.
 - (a) Find the slope of the path at time t = 2. Show the computations that lead to your answer.
 - (b) Find the acceleration vector of the car at the time when the car's horizontal position is x = 140.
 - (c) Find the time *t* at which the car is at its maximum height, and find the speed, in m/sec, of the car at this time.
 - (d) For 0 < t < 18, there are two times at which the car is a ground level (y = 0). Find these two times and write an expression that gives the average speed, in m/sec, of the car between these two times. Do not evaluate the expression.

- 40. (2002B BC1) A particle moves in the *xy*-plane so that its position at any time t, $-\pi \le t \le \pi$, is given by $x(t) = \sin(3t)$ and y(t) = 2t.
 - (a) Sketch the path of the particle on a set of *x* and *y*-axes. Indicate the direction of motion along the path.
 - (b) Find the range of x(t) and the range of y(t).
 - (c) Find the smallest positive value of *t* for which the *x*-coordinate of the particle is a local maximum. What is the speed of the particle at this time?
 - (d) Is the distance traveled by the particle in $-\pi \le t \le \pi$ greater than 5π ? Justify your answer.

41. (2003 BC2) A particle starts at point A on the positive x – axis at time t = 0 and travels along the curve from A to B to C to D, as shown above. The coordinates of the particle's position

$$(x(t), y(t))$$
 are differentiable functions of t , where $x' = \frac{dx}{dt} = -9\cos\left(\frac{\pi t}{6}\right)\sin\left(\frac{\pi\sqrt{t+1}}{2}\right)$ and

 $y' = \frac{dy}{dt}$ is not explicitly given. At time t = 9, the particle reaches its final position at point D on the positive x – axis.

- (a) At point *C*, is $\frac{dy}{dt}$ positive? At point *C*, is $\frac{dx}{dt}$ positive? Give a reason for each answer.
- (b) The slope of the curve is undefined at point *B*. At what time *t* is the particle at *B*?
- (c) The line tangent to the curve at the point (x(8), y(8)) has equation $y = \frac{5}{9}x 2$. Find the velocity vector and the speed of the particle at this point.
- (d) How far apart are points *A* and *D*, the initial and final positions, respectively, of the particle?
- 42. (2003B BC4) A particle moves in the xy plane so that the position of the particle at any time t is given by $x(t) = 2e^{3t} + e^{-7t}$ and $y(t) = 3e^{3t} e^{-2t}$.
 - (a) Find the velocity vector for the particle in terms of t, and find the speed of the particle at time t = 0.
 - (b) Find $\frac{dy}{dx}$ in terms of t, and find $\lim_{t\to\infty} \frac{dy}{dx}$.
 - (c) Find each value *t* at which the line tangent to the path of the particle is horizontal, or explain why none exists.
 - (d) Find each value *t* at which the line tangent to the path of the particle is vertical, or explain why none exists.

- 43. (2004 BC3) An object moving along a curve in the *xy*-plane has position (x(t), y(t)) at time $t \ge 0$ with $\frac{dx}{dt} = 3 + \cos(t^2)$. The derivative $\frac{dy}{dx}$ is not explicitly given. At time t = 2, the object is at position (1, 8).
 - (a) Find the *x*-coordinate of the position of the object at time t = 4.
 - (b) At time t = 2, the value of $\frac{dy}{dt} = -7$. Write an equation for the line tangent to the curve at the point (x(2), y(2)).
 - (c) Find the speed of the object at time t = 2.
 - (d) For $t \ge 3$, the line tangent to the curve at (x(t), y(t)) has a slope of 2t + 1. Find the acceleration vector of the object at time t = 4.
- 44. (2004B BC1) A particle moving along a curve in the plane has position (x(t), y(t)) at time t, where $\frac{dx}{dt} = \sqrt{t^4 + 9}$ and $\frac{dy}{dt} = 2e^t + 5e^{-t}$ for all real values of t. At time t = 0, the particle is at the point (4, 1).
 - (a) Find the speed of the particle and its acceleration vector at time t = 0.
 - (b) Find an equation of the line tangent to the path of the particle at time t = 0.
 - (c) Find the total distance traveled by the particle over the time interval $0 \le t \le 3$.
 - (d) Find the x coordinate of the position of the particle at time t = 3.
- 45. (2005B BC1) A particle moving along a curve in the *xy*-plane has position (x(t), y(t)) at time $t \ge 0$, where $\frac{dx}{dt} = 12t 3t^2$ and $\frac{dy}{dt} = \ln(1 + (t 4)^4)$. At time t = 0, the particle is at the point (-13, 5). At t = 2, the object is at point *P* with *x* coordinate 3.
 - (a) Find the acceleration vector at time t=2 and the speed at time t=2.
 - (b) Find the y coordinate of P.
 - (c) Write an equation for the line tangent to the curve at P.
 - (d) For what value of t, if any, is the object at rest? Explain your reasoning.
- 46. (2006 BC3) An object moving along a curve in the *xy*-plane is at position (x(t), y(t)) at time t, where $\frac{dx}{dt} = \sin^{-1}(1 2e^{-t})$ and $\frac{dy}{dt} = \frac{4t}{1+t^3}$ for t > 0. At time t = 2, the object is at the point (6,-3).
 - (a) Find the acceleration vector and the speed of the object at time t=2.
 - (b) The curve has a vertical tangent line at one point. At what time t is the object at this point?
 - (c) Let m(t) denote the slope of the line tangent to the curve at the point (x(t), y(t)). Write an expression for m(t) in terms of t and use it to evaluate $\lim m(t)$.
 - (d) The graph of the curve has a horizontal asymptote y = c. Write, but do not evaluate, and expression involving an improper integral that represents this value c.

- 47. (2006B BC2) An object moving along a curve in the *xy*-plane is at position (x(t), y(t)) at time t, where $\frac{dx}{dt} = \tan(e^{-t})$ and $\frac{dy}{dt} = \sec(e^{-t})$ for $t \ge 0$. At time t = 1, the object is at the point (2, -3).
 - (a) Write an equation for the line tangent to the curve at position (2, -3).
 - (b) Find the acceleration vector and the speed of the object at time t = 1.
 - (c) Find the total distance traveled by the object over the time interval $1 \le t \le 2$.
 - (d) Is there a time $t \ge 0$ at which the object is on the y axis? Explain why or why not.
- 48. (2007B BC2) An object moving along a curve in the xy plane is at position (x(t), y(t)) at time t with $\frac{dx}{dt} = \arctan\left(\frac{t}{1+t}\right)$ and $\frac{dy}{dt} = \ln\left(t^2+1\right)$ for $t \ge 0$. At time t = 0, the object is at position (-3,4).
 - (a) Find the speed of the object at time t = 4.
 - (b) Find the total distance traveled by the object over the time interval $0 \le t \le 4$.
 - (c) Find x(4).
 - (d) For t > 0, there is a point on the curve where the line tangent to the curve has slope 2. At what time t is the object at this point? Find the acceleration vector at this point.
- 49. (2008B BC1) A particle moving along a curve in the xy plane has position (x(t), y(t)) at time $t \ge 0$ with $\frac{dx}{dt} = \sqrt{3t}$ and $\frac{dy}{dt} = 3\cos\left(\frac{t^2}{2}\right)$. The particle is at position (1, 5) at time t = 4.
 - (a) Find the acceleration vector at time t = 4.
 - (b) Find the y coordinate of the position of the particle at time t = 0.
 - (c) On the interval $0 \le t \le 4$, at what time does the speed of the particle first reach 3.5?
 - (d) Find the total distance traveled by the particle over the time interval $0 \le t \le 4$.

Answers

Parametric Curves and Derivatives							<u>Length of Parametric Curves</u>					
1. A	1998	B BC	#2	92%	1	8.	D	1993	BC	#23	83%	
2. B	1985	5 BC	#30	73%	1	9.	D	1997	BC	#15	66%	
3. C	1988	B BC	#34	68%	2	0.	C	1998	BC	#21	73%	
4. D	1993	BC BC	#25	54%								
5. A	1993	BC BC	#6	39%	<u>V</u>	e	ctors					
6. B	1993	BC BC	#4	75%	2	3.	E	1998	BC	#77	87%	
7. E	1997	7 BC	#2	92%	2	4.	D	1985	BC	#4	69%	
8. C	1997	7 BC	#18	62%	2	5.	E	1988	BC	#15	75%	
9. D	2003	BC BC	#4	79%	2	6.	Α	1993	BC	#28	86%	
10. C	2003	BC BC	#7	29%	2	7.	E	1998	BC	#10	75%	
11. A	2003	BC BC	#17	36%	2	8.	C	2003	BC	#84	62%	